
Short Labeling Schemes for Topology Recognition in
Wireless Tree Networks

Barun Gorain and Andrzej Pelc?

Département d’informatique, Université du Québec en Outaouais, Gatineau, Québec J8X 3X7,
Canada.

Email: baruniitg123@gmail.com, pelc@uqo.ca

Abstract. We consider the problem of topology recognition in wireless (radio)
networks modeled as undirected graphs. Topology recognition is a fundamental
task in which every node of the network has to output a map of the underlying
graph i.e., an isomorphic copy of it, and situate itself in this map. In wireless
networks, nodes communicate in synchronous rounds. In each round a node can
either transmit a message to all its neighbors, or stay silent and listen. At the
receiving end, a node v hears a message from a neighbor w in a given round, if
v listens in this round, and if w is its only neighbor that transmits in this round.
Nodes have labels which are (not necessarily different) binary strings. The length
of a labeling scheme is the largest length of a label. We concentrate on wireless
networks modeled by trees, and we investigate two problems.

– What is the shortest labeling scheme that permits topology recognition in all
wireless tree networks of diameter D and maximum degree ∆?

– What is the fastest topology recognition algorithm working for all wireless
tree networks of diameter D and maximum degree ∆, using such a short
labeling scheme?

We are interested in deterministic topology recognition algorithms. For the first
problem, we show that the minimum length of a labeling scheme allowing topol-
ogy recognition in all trees of maximum degree ∆ ≥ 3 is Θ(log log∆). For
such short schemes, used by an algorithm working for the class of trees of diam-
eter D ≥ 4 and maximum degree ∆ ≥ 3, we show almost matching bounds on
the time of topology recognition: an upper bound O(D∆), and a lower bound
Ω(D∆ε), for any constant ε < 1.
Our upper bounds are proven by constructing a topology recognition algorithm
using a labeling scheme of length O(log log∆) and using time O(D∆). Our
lower bounds are proven by constructing a class of trees for which any topology
recognition algorithm must use a labeling scheme of length at leastΩ(log log∆),
and a class of trees for which any topology recognition algorithm using a labeling
scheme of length O(log log∆) must use time at least Ω(D∆ε), on some tree of
this class.

keywords: topology recognition, wireless network, labeling scheme, feasibility,
tree, time

? Partially supported by NSERC discovery grant 8136–2013 and by the Research Chair in Dis-
tributed Computing at the Université du Québec en Outaouais.

1 Introduction

The model and the problem. Learning the topology of an unknown network by its
nodes is a fundamental distributed task in networks. Every node of the network has to
output a map of the underlying graph, i.e., an isomorphic copy of it, and situate itself in
this map. Topology recognition can be considered as a preprocessing procedure to many
other distributed algorithms which require the knowledge of important parameters of the
network, such as its size, diameter or maximum degree. It can also help to determine
the feasibility of some tasks that depend, e.g., on symmetries existing in the network.

We consider wireless networks, also known as radio networks. Such a network is
modeled as a simple undirected connected graph G = (V,E). As it is usually assumed
in the algorithmic theory of radio networks [2, 12, 13], all nodes start simultaneously
and communicate in synchronous rounds. In each round, a node can either transmit a
message to all its neighbors, or stay silent and listen. At the receiving end, a node v
hears a message from a neighbor w in a given round, if v listens in this round, and if w
is its only neighbor that transmits in this round. We do not assume collision detection:
if more than one neighbor of a node v transmits in a given round, node v does not hear
anything (except the background noise that it also hears when no neighbor transmits).

In this paper, we restrict attention to wireless networks modeled by trees, and we
are interested in deterministic topology recognition algorithms. Topology recognition
is formally defined as follows. Every node v of a tree T must output a tree T ′ and a
node v′ in this tree, such that there exists an isomorphism f from T to T ′, for which
f(v) = v′. Topology recognition is impossible, if nodes do not have any a priori as-
signed labels, because then any deterministic algorithm forces all nodes to transmit in
the same rounds, and no communication is possible. Hence we consider labeled net-
works. A labeling scheme for a network represented by a tree T = (V,E) is any func-
tion L from the set V of nodes into the set S of finite binary strings. The string L(v)
is called the label of the node v. Note that labels assigned by a labeling scheme are not
necessarily distinct. The length of a labeling scheme L is the maximum length of any
label assigned by it. We investigate two problems.

– What is the shortest labeling scheme that permits topology recognition in all wire-
less tree networks of diameter D and maximum degree ∆?

– What is the fastest topology recognition algorithm working for all wireless tree net-
works of diameter D and maximum degree ∆, using such a short labeling scheme?

Our results. For the first problem, we show that the minimum length of a la-
beling scheme allowing topology recognition in all trees of maximum degree ∆ ≥ 3

is Θ(log log∆). For such short schemes, used by an algorithm working for the class
of trees of diameter D ≥ 4 and maximum degree ∆ ≥ 3, we show almost match-
ing bounds on the time of topology recognition: an upper bound O(D∆), and a lower
bound Ω(D∆ε), for any constant ε < 1.

Our upper bounds are proven by constructing a topology recognition algorithm
using a labeling scheme of length O(log log∆) and using time O(D∆). Our lower

bounds are proven by constructing a class of trees for which any topology recognition
algorithm must use a labeling scheme of length at least Ω(log log∆), and a class of
trees for which any topology recognition algorithm using a labeling scheme of length
O(log log∆) must use time at least Ω(D∆ε), on some tree of this class.

These main results are complemented by establishing complete answers to both
problems for very small values of D or ∆. For trees of diameter D = 3 and maximum
degree ∆ ≥ 3, the fastest topology recognition algorithm using a shortest possible
scheme (of length Θ(log log∆)) works in time Θ(log∆

log log∆). The same holds for trees
of diameter D = 2 and maximum degree at most ∆, for ∆ ≥ 3. Finally, if ∆ = 2, i.e.,
for the class of lines, the shortest labeling scheme permitting topology recognition is of
constant length, and the best time of topology recognition using such a scheme for lines
of diameter (length) at most D is Θ(logD).

Our results should be contrasted with those from [11], where topology recogni-
tion was studied in a different model. The authors of [11] considered wired networks in
which there are port numbers at each node, and communication proceeds according to
the LOCAL model [21], where in each round neighbors can exchange all available in-
formation without collisions. In this model, they showed a simple topology recognition
algorithm working for a labeling scheme of length 1 in time O(D). Thus there was no
issue of optimality: both the length of the labeling scheme and the topology recognition
time for such a scheme were trivially optimal. Hence the authors focused on tradeoffs
between the length of (longer) schemes and the time of topology recognition. In our
scenario of wireless networks, the labeling schemes must be longer and algorithms for
such schemes must be slower, in order to overcome collisions.

Related work. Algorithmic problems in radio networks modeled as graphs were
studied for such tasks as broadcasting [2,13], gossiping [2,12] and leader election [19].
In some cases [2, 12] the topology of the network was unknown, in others [13] nodes
were assumed to have a labeled map of the network and could situate themselves in it.

Providing nodes of a network or mobile agents circulating in it with information of
arbitrary type (in the form of binary strings) that can be used to perform network tasks
more efficiently has been proposed in [1, 3–10, 14, 16–18, 20]. This approach was re-
ferred to as algorithms using informative labeling schemes, or equivalently, algorithms
with advice. When advice is given to nodes, two variations are considered: either the
binary string given to nodes is the same for all of them [15] or different strings may be
given to different nodes [9, 11], as in the case of the present paper. If strings may be
different, they can be considered as labels assigned to nodes. Several authors studied
the minimum size of advice (length of labels) required to solve the respective network
problem in an efficient way. The framework of advice or labeling schemes permits to
quantify the amount of information that nodes need for an efficient solution of a given
network problem, regardless of the type of information that is provided.

In [3] the authors investigated the minimum size of advice that has to be given to
nodes to permit graph exploration by a robot. In [18], given a distributed representation
of a solution for a problem, the authors investigated the number of bits of communica-

tion needed to verify the legality of the represented solution. In [7] the authors compared
the minimum size of advice required to solve two information dissemination problems,
using a linear number of messages. In [8] the authors established the size of advice
needed to break competitive ratio 2 of an exploration algorithm in trees. In [9] it was
shown that advice of constant size permits to carry on the distributed construction of a
minimum spanning tree in logarithmic time. In [12] short labeling schemes were con-
structed with the aim to answer queries about the distance between any pair of nodes.
In [5] the advice paradigm was used for online problems. In the case of [20] the issue
was not efficiency but feasibility: it was shown that Θ(n log n) is the minimum size
of advice required to perform monotone connected graph clearing. In [16] the authors
studied radio networks for which it is possible to perform centralized broadcasting in
constant time. This is the only paper studying the size of advice in the context of radio
networks. In [11] the authors studied the task of topology recognition in wired networks
with port numbers. The differences between this scenario and our setting of radio net-
works, in the context of topology recognition, was discussed in the previous section.

2 Preliminaries and organization

Throughout the paper, D denotes the diameter of the tree and ∆ denotes its maximum
degree. The problem of topology recognition is non-trivial only for D,∆ ≥ 2, hence
we make this assumption from now on.

According to the definition of labeling schemes, a label of any node should be a
finite binary string. For ease of comprehension, we present our labels in a more struc-
tured way, as either finite sequences of binary strings, or pairs of such sequences, where
each of the component binary strings is later used in the topology recognition algo-
rithm in a particular way. It is well known that a sequence (s1, . . . , sk) of binary strings
or a pair (σ1, σ2) of such sequences can be unambiguously coded as a single binary
string whose length is a constant multiple of the sum of lengths of all binary strings
si that compose it. Hence, presenting labels in this more structured way and skipping
the details of the encoding does not change the order of magnitude of the length of the
constructed labeling schemes.

Let T be any rooted tree with root r, and let L(T) be a labeling scheme for this
tree. We say that a node u in T reaches r within time τ using algorithmA if there exists
a simple path u = u0, u1, · · · , uk−1, uk = r and a sequence of integers t0 < t1 <

· · · < tk−1 ≤ τ , such that in round ti, the node ui is the only child of its parent ui+1

that transmits and the node ui+1 does not transmit in round ti, according to algorithm
A.

We define the history H(A, τ) of the root r of the tree T as the labeled subtree of
T which is spanned by all the nodes that reach r within time τ , using algorithm A. The
history H(A, τ) is the total information that node r can learn about the tree T in time
τ , using algorithm A.

3 A lower bound on the length of labeling schemes

As mentioned in the Introduction, topology recognition without any labels cannot be
performed in any tree because no information can be successfully transmitted in an
unlabeled radio network. Hence, the length of a labeling scheme permitting topol-
ogy recognition must be a positive integer. In this section we show a lower bound
Ω(log log∆) on the length of labeling schemes that permit topology recognition for
all trees with maximum degree ∆ ≥ 3.

Let S be a star with the central node r of degree ∆. Denote one of the leaves of
S by a. For b∆2 c ≤ i ≤ ∆ − 1, we construct a tree Ti by attaching i leaves to a. The
maximum degree of each tree Ti is∆. Let T be the set of trees Ti, for b∆2 c ≤ i ≤ ∆−1.
Hence the size of T is at least ∆2 .

The following result shows that any labeling scheme allowing topology recogni-
tion in trees of maximum degree ∆ must have length Ω(log log∆).

Theorem 1. For any tree T ∈ T consider a labeling scheme LABEL(T). Let TOPO
be any topology recognition algorithm that solves topology recognition for every tree
T ∈ T using the scheme LABEL(T). Then there exists a tree T ′ ∈ T , for which the
length of the scheme LABEL(T ′) is Ω(log log∆).

4 Time for maximum degree∆ ≥ 3 and diameterD ≥ 4

In this section, we present our main results on the time of topology recognition, us-
ing the shortest possible labeling schemes (those of length Θ(log log∆)) for trees of
maximum degree ∆ ≥ 3 and diameter D ≥ 4. We propose an algorithm using a label-
ing scheme of length Θ(log log∆) and working in time O(D∆), and prove an almost
matching lower bound Ω(D∆ε) on the time of such schemes, for any constant ε < 1.

4.1 The main algorithm

Let T be a rooted tree of diameter D and maximum degree ∆. It has either a central
node or a central edge, depending on whether D is even or odd. If D is even, then the
central node is the unique node in the middle of every simple path of length D, and
if D is odd, then the central edge is the unique edge in the middle of every simple
path of length D. For the sake of description, we choose the central node or one of the
endpoints of the central edge as the root r of T . Let h = dD/2e be the height of this
tree. The level of any node v is its distance from the root. For any node v we denote by
Tv the subtree of T rooted at v.

We propose an algorithm that solves topology recognition in time O(D∆), using
a labeling scheme of length O(log log∆). The structure of the tree will be transmitted
bottom up, so that the root learns the topology of the tree, and then transmits it to all
other nodes. The main difficulty is to let every node know the round number ρ in which
it has to transmit, so that it is the only node among its siblings that transmits in round

ρ, and consequently its parent gets the message. Due to very short labels, ρ cannot be
explicitly given to the node as a part of its label. We overcome this difficulty by carefully
coding ρ for a node v, using the labels given to the nodes of the subtree rooted at v, so
that v can unambiguously decode ρ.

A node v in T is called heavy, if |V (Tv)| ≥ 1
4 (blog∆c+ 1). Otherwise, the node

is called light. Note that the root is a heavy node. For a heavy node v, choose a subtree
T ′v of Tv rooted at v, of size d 14 (blog∆c+ 1)e.

First, we define the labeling scheme Λ. The label Λ(v) of each node v contains
two parts. The first part is a vector of markers that are binary strings of constant length,
used to identify nodes with different properties. The second part is a vector of 5 binary
strings of lengthO(log log∆) that are used to determine the time when the node should
transmit.

Below we describe how the markers are assigned to different nodes of T .
1. Mark the root r by the marker 0, and mark one of the leaves at maximum depth

by the marker 1.
2. Mark all the nodes in T ′r by the marker 2.
3. Mark every heavy node by the marker 3, and mark every light node by the

marker 4.
4. For every heavy node v all of whose children are light, mark all the nodes of T ′v

by the marker 5.
5. For every light node v whose parent is heavy, mark all the nodes in Tv by the

marker 6.
The first part of every label is a binary string M of length 7, where the markers

are stored. Note that a node can be marked by multiple markers. If the node is marked
by the marker i, for i = 0, . . . , 6, we have M(i) = 1; otherwise, M(i) = 0.

In order to describe the second part of each label, we define an integer tv for every
heavy node v 6= r, and an integer zv , for every light node v whose parent is heavy. We
define tv , for a heavy node v at level l > 0, to identify the time slot in which v will
transmit according to the algorithm. The definition is by induction on l. For l = 1, let
v1, v2, . . . , vx, be the heavy children of r. Set tvi = i. Suppose that tv is defined for
every heavy node v at level l. Let v be a heavy node at level l. Let u1, u2, . . . , uy be
the heavy children of v. We set tu1

= tv , and we define tuj , for 2 ≤ j ≤ y, as distinct
integers from the range {1, . . . , y} \ {tv}. This completes the definition of tv , for all
heavy nodes v 6= r.

We now define zv , for a light node v whose parent is heavy, to identify the time
slot in which v will transmit according to the algorithm. Let Si be a maximal sequence
of non-isomorphic rooted trees of i nodes. There are at most 22(i−1) such trees. Let S
be the sequence which is the concatenation of S1, S2, . . . , Sd 14 (blog∆c+1)e−1. Let q be

the length of S. Then q ≤ 22(
1
4 (blog∆c+1)) ≤

√
2∆. Note that the position of any tree

of i nodes in S is at most 22i−1. Let S = (T1, T2, . . . , Tq). For a light node v whose
parent is heavy, we define zv = k, if Tv and Tk are isomorphic.

The second part of each label is a vector L of length 5, whose terms L(i) are
binary strings of lengthO(log log∆). Initialize all terms L(i) for every node v to 0. We
now describe how some of these terms are changed for some nodes. They are defined
as follows.

1. All the nodes which get M(2) = 1 are the nodes of T ′r. There are exactly
d 14 (blog∆c + 1)e nodes in T ′r. All nodes in T ′r are assigned distinct ids which are
binary representations of the integers 1 to d 14 (blog∆c + 1)e. Let s be the string of
length (blog∆c+1) which is the binary representation of the integer∆. Let b1, b2, · · · ,
bd 14 (blog∆c+1)e be the substrings of s, each of length at most 4, such that s is the con-
catenation of the substrings b1, b2, · · · , bd 14 (blog∆c+1)e. The term L(0) corresponding to
a node whose id is i, is set to the pair (B(i), bi), whereB(i) is the binary representation
of the integer i. The intuitive role of the term L(0) is to code the integer ∆ in the nodes
of the tree T ′r.

2. Let v be a node withM(3) = 1, andM(5) = 1, i.e, let v be a heavy node whose
all children are light. All nodes in T ′v are assigned distinct ids which are binary repre-
sentations of integers 1 to d 14 (blog∆c+1)e. Let s be the string of length (blog∆c+1)

which is the binary representation of the integer tv . Let b1, b2, · · · , bd 14 (blog∆c+1)e be
the substrings of s, each of length at most 4, such that s is the concatenation of the
substrings b1, b2, · · · , bd 14 (blog∆c+1)e. The term L(1) corresponding to a node whose id
is i, is set to the pair (B(i), bi), where B(i) is the binary representation of the integer i.
The intuitive role of the term L(1) is to code the integer tv , for a heavy node v whose
all children are light, in the nodes of the tree T ′v .

3. Let v be a node with M(3) = 1, i.e., a heavy node. Let u be the parent of v.
If tu = tv , set L(2) = 1 for the node v. The intuitive role of the term L(2) at a heavy
node v is to tell its parent u what is the value of tu.

4. Let v be a node with M(4) = 1 and M(6) = 1, i.e, let v be a light node whose
parent is heavy. All nodes in Tv are assigned distinct ids which are binary representa-
tions of the integers 1 to p, where p is the size of Tv . Let s be the string of length at most
2p which is the binary representation of the integer zv . Let b1, b2 · · · , bp be the sub-
strings of s, each of length at most 2, such that s is the concatenation of the substrings
b1, b2 · · · , bp. The term L(3) of the node whose id is i is set to the pair (B(i), bi), where
B(i) is the binary representation of the integer i. The intuitive role of the term L(3) is
to code the integer zv , for a light node v whose parent is heavy, in the nodes of the tree
Tv .

5. Let v be a node with M(3) = 1, i.e., a heavy node. Partition all light children u
of v into sets with the same value of zu. Consider any set {u1, u2, . . . , ua} in this parti-
tion. Let s be the binary representation of the integer a and let b1, b2, · · · , bd 14 (blog ac+1)e
be the substrings of s, each of length at most 4, such that s is the concatenation of the
substrings b1, b2, · · · , bd 14 (blog ac+1)e.

For node ui, where i ≤ d 14 (blog ac+1)e, the termL(4) is set to the pair (B(i), bi),
where B(i) is the binary representation of the integer i, for 1 ≤ i ≤ blog ac + 1, and
bi is the ith bit of the binary representation of a. The intuitive role of the term L(4) is

to force two light children v1 and v2 of the same heavy parent, such that zv1 = zv2 , to
transmit in different rounds.

6. For any node v the term L(5) is set to the binary representation of the integer
d 14 (blog∆c+1)e. This term will be used in a gossiping algorithm that plays the role of
a subroutine in our algorithm.

Notice that the length of each L(j) defined above is of length O(log log∆) for
every node, and there is no ambiguity in setting these terms, as every term for a node
is modified at most once. This completes the description of our labeling scheme whose
length is O(log log∆).
Algorithm Tree Topology Recognition
The algorithm consists of four procedures, namely Procedure Parameter Learning,
Procedure Slot Learning, Procedure T-R and Procedure Final. They are called
in this order by the algorithm. In the first two procedures we will use the simple gos-
siping algorithm Round-Robin which enables nodes of any graph of size at most m
with distinct ids from the set {1, . . . ,m} to gossip in timem2, assuming that they know
m and that each node with id i has an initial message µi. The time segment 1, . . . ,m2

is partitioned into m segments of length m, and the node with id i transmits in the ith
round of each segment. In the first time segment, each node with id i transmits the mes-
sage (i, µi). In the remaining m − 1 time segments, nodes transmit all the previously
acquired information. Thus at the end of algorithm Round-Robin, all nodes know the
entire topology of the network, with nodes labeled by pairs (i, µi).
Procedure Parameter Learning
The aim of this procedure is for every node of the tree to learn the maximum degree ∆,
the level of the tree to which the node belongs, and the height h of the tree.

The procedure consists of two stages. The first stage is executed in rounds 1, . . . ,m2,
where m = d 14 (blog∆c + 1)e, and consists of performing algorithm Round-Robin
by the nodes with M(2) = 1, i.e., the nodes in T ′r. Each such node uses its id i written
in the first component of the term L(0), uses its label as µi, and takes m as the integer
whose representation is given in the term L(5).

After this stage, the node withM(0) = 1, i.e., the root r, learns all pairs (B(1), b1),
..., (B(m), bm), where B(i) is the binary representation of the integer i, corresponding
to the term L(0) at the respective nodes. It computes the concatenation s of the strings
b1, b2, . . . , bm. This is the binary representation of ∆.

The second stage of the procedure starts in round m2 + 1. In round m2 + 1, the
root r transmits the message µ that contains the value of ∆. A node v, which receives
the message µ at time m2 + i for the first time, sets its level as i and transmits µ. When
the node u with M(1) = 1, i.e., a deepest leaf, receives µ in round m2 + j, it sets its
level as h = j, learns that the height of the tree is h, and transmits the pair (h, h) in the
next round. Every node at level l, after receiving the message (h, l + 1) (from a node
of level l+ 1) learns h and transmits the pair (h, l). After receiving the message (h, 1),
the root r transmits the message µ′ that contains the value h. Every node learns h after

receiving it for the first time and retransmits µ′, if its level is less than h. The stage, and
hence the entire procedure, ends in round m2 + 3h.
Procedure Slot Learning
The aim of this procedure is for every heavy node all of whose children are light, and
for every light node whose parent is heavy, to learn the time slot in which it should
transmit. Moreover, at the end of the procedure, every light node v learns Tv .

Let t0 = m2 + 3h, where m = d 14 (blog∆c + 1)e. The total number of rounds
reserved for this procedure is 2m2. The procedure starts in round t0 + 1 and ends in
round t0 + 2m2. The procedure consists of two stages. The first stage is executed in
rounds t0 + 1, . . . , t0 +m2, and consists of performing algorithm Round-Robin by
the nodes with L(1) 6= 0, i.e., the nodes in T ′v , for a heavy node v all of whose children
are light. Each such node uses its id i written in the first component of the term L(1),
uses its label as µi, and takes m as the integer whose representation is given in the
term L(5). After this stage, each node v with M(3) = 1 and M(5) = 1, i.e., a heavy
node all of whose children are light, learns all pairs (B(1), b1), . . . , (B(m), bm), where
B(i) is the binary representation of the integer i, corresponding to the term L(1) at the
respective nodes. It computes the concatenation s of the strings b1, b2, . . . , bm. This is
the binary representation of the integer tv , which will be used to compute the time slot
in which node v will transmit in the next procedure.

The second stage is executed in rounds t0 +m2 + 1, . . . , t0 + 2m2, and consists
of performing algorithm Round-Robin by the nodes with L(2) 6= 0, i.e., the nodes
in Tv , for a light node v whose parent is heavy. Each such node uses its id i written
in the first component of the term L(3), uses its label as µi, and takes m as the inte-
ger whose representation is given in the term L(5). After this stage, each node v with
M(4) = 1 and M(6) = 1, i.e., a light node whose parent is heavy, learns all pairs
(B(1), b1), . . . , (B(k), bk), where k < m and B(i) is the binary representation of the
integer i, corresponding to the term L(3) at the respective nodes. Node v computes the
concatenation s of the strings b1, b2, . . . , bk. This is the binary representation of the
integer zv , which will be used to compute the time slot in which node v will transmit
in the next procedure. Moreover, each node w in Tv learns Tw because it knows the
entire tree Tv with all id’s. The stage, and hence the entire procedure, ends in round
t1 = t0 + 2m2.
Procedure T-R
The aim of this procedure is learning the topology of the tree by the root.

All heavy nodes and all light nodes whose parent is heavy transmit in this pro-
cedure. The procedure is executed in h epochs. The number of rounds reserved for an
epoch is 2∆. The first ∆ rounds of an epoch are reserved for transmissions of heavy
nodes and the last ∆ rounds of an epoch are reserved for transmissions of light nodes
whose parent is heavy. The epoch j starts in round t1+2(j−1)∆+1 and ends in round
t1 + 2j∆. All the nodes at level h− i+ 1 which are either heavy nodes or light nodes
with a heavy parent transmit in the epoch i. When a node v transmits in some epoch, it
transmits a message (Λ(v), Tv, C), where C = tv , if v is a heavy node, and C = 0, if

it is a light node. Below we describe the steps that a node performs in the execution of
the procedure, depending on its label.

Let v be a node withM(4) = 1 andM(6) = 1, i.e., v is a light node whose parent
is heavy. The node v transmit in this procedure if L(4) 6= 0. Let the level of v (learned
in the execution of Procedure Parameter Learning) be l. Let the first component
of the term L(4) be the binary representation of the integer c > 0. The node v already
knows the value zv which it learned in the execution of Procedure Slot Learning.
Knowing ∆, node v computes the list S = (T1, T2, . . . , Tq) of trees (defined above)
which unambiguously depends on ∆. The node v transmits the message (Λ(v), Tzv , 0)

in round t1 +2(h− l)∆+∆+ (zv − 1)d 14 (blog∆c+1)e+ c. We will show that node
v is the only node among its siblings that transmits in this round.

Let v be a node withM(3) = 1 andM(5) = 1, i.e., v is a heavy node all of whose
children are light. Let l be the level of v. All the children of v are light nodes with a
heavy parent. They are at level l − 1. Let u1, u2, . . . , uk be those children from which
v received messages in the previous epoch. First, the node v partitions the nodes u1,
u2, . . . , uk into disjoint sets R1, R2, · · · , Re such that all nodes in the same set have
sent the message with same tree Q. For each such set Rd, 1 ≤ d ≤ e, let Qd be the
tree sent by nodes from Rd. The node v got all pairs (B(1), b1), . . . , (B(x), bx), where
x = |Rd| < m and B(i) is the binary representation of the integer i, corresponding to
the term L(4) at its children in Rd. Node v computes the concatenation s of the strings
b1, b2, . . . , bk. Let yd be the integer whose binary representation is s. After computing
all yd’s, for 1 ≤ d ≤ e, v computes the tree Tv , by attaching yd copies of the the tree
Qd to v for d = 1, . . . , e. The node v transmits the message (Λ(v), Tv, tv) in round
t1 + 2(h− l)∆+ tv . We will show that node v is the only node among its siblings that
transmits in this round.

Let v be a node with M(3) = 1 and M(5) = 0, i.e., v is a heavy node who
has at least one heavy child. Let u1, . . . , uk1 be the light children of v from which v
received a message in the previous epoch, and let u′1, . . . , u

′
k2

be the heavy children of
v from which v received a message in the previous epoch. The node v computes the
tree Tv rooted at v as follows. It first attaches trees rooted at its light children, using
the messages it received from them, in the same way as explained in the previous case.
Then, it attaches trees rooted at its heavy children. These trees are computed from the
code β in the message from each of the heavy children of v. Let u′ be the unique heavy
child of v for which the term L(5) = 1. The node v computes tv which is equal to the
term C in the message it received from the node u′. The node v transmits the message
(Λ(v), Tv, tv) in round t1 +2(h− l)∆+ tv . We will show that node v is the only node
among its siblings that transmits in this round.
Procedure Final
The aim of this procedure is for every node of the tree to learn the topology of the
tree and to place itself in the tree. The procedure starts in round t1 + 2h∆ + 1 and
ends in round t1 + 2h∆+ h. In round t1 + 2h∆+ 1, the root r transmits the message
that contains the tree Tr. In general, every node v transmits a message exactly once in

Procedure Final. This message contains the sequence (Tr, Twp , . . . , Tw1
, Tv), where

wi is the ancestor of v at distance i. In view of the fact that every node v already knows
Tv at this point, after receiving a message containing the sequence (Tr, Twp , . . . , Tw1

)

in round j, a node v transmits the sequence (Tr, Twp , . . . , Tw1 , Tv) in round j+1, if its
level is less than h.

A node v outputs the tree Tr, and identifies itself as one of the nodes in Tr for
which the subtrees rooted at their ancestors in each level starting from the root are
isomorphic to the trees in the sequence (Tr, Twp , . . . , Tw1 , Tv). (Notice that there may
be many such nodes). The procedure ends in round t1+2h∆+h, when all nodes place
themselves in Tr and output Tr.

Theorem 2. Upon completion of Algorithm Tree Topology Recognition, all
nodes of a tree correctly output the topology of the tree and place themselves in it. The
algorithm uses labels of length O(log log∆) and works in time O(D∆), for trees of
maximum degree ∆ and diameter D.

4.2 The lower bound

In this section, we prove that any topology recognition algorithm using a labeling
scheme of length O(log log∆) must use time at least Ω(D∆ε), for any constant ε < 1,
on some tree of diameterD ≥ 4 and maximum degree∆ ≥ 3. We split the proof of this
lower bound into three parts, corresponding to different ranges of the above parameters,
as the proof is different in each case.
Case 1:∆ bounded,D unbounded. In this case we need to show a lower boundΩ(D).

Lemma 1. Let D ≥ 4 be any integer, let ∆ ≥ 3 be any integer constant and let
c > 1 be any real constant. For any tree T of maximum degree ∆ consider a label-
ing scheme LABEL(T) of length at most c log log∆. Let TOPO be any algorithm that
solves topology recognition for every tree T of maximum degree ∆ using the labeling
scheme LABEL(T). Then there exists a tree T of maximum degree ∆ and diameter D
for which TOPO must take time Ω(D).

Case 2: ∆ unbounded, D bounded. In this case, we need to show a lower bound
Ω(∆ε), for any constant ε < 1. The following lemma proves a stronger result.

Lemma 2. Let ∆ ≥ 3 be any integer, let D ≥ 4 be any integer constant, and let c > 0

be any real constant. For any tree T of maximum degree ∆, consider a labeling scheme
LABEL(T) of length at most c log log∆. Let TOPO be an algorithm that solves topol-
ogy recognition for every tree of maximum degree ∆ and diameterD using the labeling
scheme LABEL(T). Then there exists a tree T of maximum degree ∆ and diameter D
for which TOPO must take time Ω(∆

(log∆)c).

Case 3: unbounded ∆ and D. Let ∆ ≥ 3, D ≥ 4 be integers. We first assume that D
is even. The case when D is odd will be explained later. It is enough to prove the lower

bound for D ≥ 6. Let h = bD6 c and g = D
2 − h. Then 2h ≤ g ≤ 2h + 2. Let P be

a line of length g with nodes v1, v2, · · · , vg+1, where v1 and vg+1 are the endpoints of
P . We construct from P a class of trees called sticks as follows.

Let x = (x1, x2, · · · , xg) be a sequence of integers, with 0 ≤ xi ≤ ∆ − 2. Con-
struct a tree Px by attaching xi leaves to the node vi for 1 ≤ i ≤ g. Let P be the set of
all sticks constructed from P . Then |P| = (∆− 1)g . Let P = {P1, P2, · · · , P(∆−1)g}.

Let S be a rooted tree of height h, with root r of degree ∆ − 1, and with all
other non-leaf nodes of degree ∆. The nodes in S are called basic nodes. Let Z =

{w1, w2, · · · , wz}, where z = (∆− 1)h, be the set of leaves of S. Consider a sequence
y = (y1, y2, · · · , yz), for 1 ≤ yi ≤ (∆ − 1)g . We construct a tree Ty from S by
attaching to it the sticks in the following way: each leaf wi is identified with the node
v1 of the stick Pyi , for 1 ≤ i ≤ z. We will say that the stick Pyi is glued to node wi.
The diameter of each tree Ty is D. For odd D, do the above construction for D− 1 and
attach one additional node of degree 1 to one of the leaves.

Let T (∆,D) be a maximal set of pairwise non-isomorphic trees among the trees
Ty . Then, |T (∆,D)| ≥ ((∆−1)g)z

z! ≥ ((∆−1)g)z
z! ≥ (∆− 1)h(∆−1)

h

.
Consider any time τ > 0. For any tree T ∈ T (∆,D), consider any labeling

scheme L(T) and let A be any algorithm that solves topology recognition in every tree
T ∈ T (∆,D) in time τ , using the labeling scheme L(T). The following lemma gives
an upper bound on the number of basic nodes that can belong to a history of the root r.

Lemma 3. Let B be the number of basic nodes of level i that can reach r within time
τ , according to algorithm A. Then B ≤ τ i

i! if τ ≥ i, and B = 0, otherwise.

The next lemma gives a lower bound on the time of topology recognition for the
class T (∆,D).

Lemma 4. Let ε < 1 be any positive real constant, and let c > 1 be any real constant.
For any tree T ∈ T (∆,D), consider a labeling scheme LABEL(T) of length at most
c log log∆. Then there exist integers ∆0, D0 > 0 such that any algorithm that solves
topology recognition for every tree T ∈ T (∆,D), where ∆ ≥ ∆0 and D ≥ D0, using
the scheme LABEL(T), must take time Ω(D∆ε) for some tree T ∈ T (∆,D).

Proof. Wee first do the proof for even D. Consider an algorithm TOPO that solves
topology recognition for every tree T ∈ T (∆,D) in time τ ≤ (D6 − 1)∆ε ≤ h∆ε

with a labeling scheme LABEL(T) of length at most c log log∆. For a scheme of this
length, there are at most 2c log log∆+1 = 2(log∆)c different possible labels. According
to Lemma 3, for 1 ≤ i ≤ h the number of basic nodes of level i, that reach r within
time τ is at most τ

i

i! , if τ ≥ i, otherwise there are no such nodes.
Denote by q the total number of basic nodes that reach r within time τ . If τ ≥ h,

then q ≤
∑h
i=1

τ i

i! ≤ h τ
h

h = h (h∆ε)h

h! . We know that log(h!) = h log h − h
ln 2 +

1
2 log h + O(1) ≥ h log h − h

ln 2 . Since ln 2 > 1
2 , we have log(h!) > h log h − 2h.

Therefore, h! > hh

2−2h , and hence q ≤ h∆hε22h. If τ < h, then q ≤
∑τ
i=1

τ i

i! ≤
τ∆τε22τ ≤ h∆hε22h. Therefore, q ≤ h∆hε22h, for all τ > 0.

The number of different unlabeled sticks is at most (∆ − 1)2h+2. Nodes of each
such stick can be labeled with labels of length at most bc log log∆c in at most
(2(log∆)c)

(2h+2)∆ ways, because each stick can have at most (2h+2)∆ nodes. There-
fore, the number of different labeled sticks is at most p= (∆−1)2h+2 (2(log∆)c)

(2h+2)∆.
The history of the root r of a tree T ∈ T (∆,D) may include some nodes from a

stick in T only if the basic node at level h to which this stick is glued is a node in the
history. The maximum information that the root can get from a basic node v at level
h, but not from any other node at this level, is the information about the whole labeled
stick glued to v.

The number of possible histories H(TOPO, τ) of the node r is at most the prod-
uct of the number of possible labelings of the basic nodes in H(TOPO, τ) and the
number of possible gluings of labeled sticks to them. Since there are at most q ba-
sic nodes in H(TOPO, τ), there are at most (2(log∆)c)q possible labelings of these
nodes. Since there are at most p labeled sticks to choose from, the number of possible
gluings of labeled sticks to the basic nodes in H(TOPO, τ) is at most pq . Therefore,
the number of possible historiesH(TOPO, τ) of the node r is at most 2q(log∆)cqpq =

(2p(log∆)c)
q . Let X = (2p(log∆)c)

q . We have logX = q(log p+1+ c log log∆) =

q+q log p+qc log log∆. Also, log p = (2h+2) log(∆−1)+(2h+2)∆(1+c log log∆).

Therefore, logX = q(1 + log p+ c log log∆)

= q (1 + (2h+ 2) log(∆− 1) + (2h+ 2)∆(1 + c log log∆) + c log log∆)≤ 5qc(2h+

2)∆ log∆≤ 5h∆hε+122hc(2h+2) log∆. Also, log |T (∆,D)| ≥ h(∆−1)h log(∆−
1). Now, for any ∆ and for sufficiently large h, we have 5h∆hε+122hc(2h + 2) <
1
2h∆

h. Therefore, 5h∆hε+122hc(2h+2) log∆ < 1
2h∆

h log∆ < h(∆− 1)h log(∆−
1), for sufficiently large ∆ and sufficiently large h.

It follows that, for sufficiently large h and ∆, we have logX < log |T (∆,D)|.
Therefore, there exist integers ∆0 and D0 such that X < |T (∆,D)|, for all ∆ ≥ ∆0

and D ≥ D0. Hence, for ∆ ≥ ∆0 and D ≥ D0, there exist two trees T1 and T2 in
T (∆,D) whose roots have the same history. Therefore, the root r in T1 and the root r
in T2 output the same tree as the topology, within time τ . This is a contradiction, which
proves the lemma for even D. For odd D, the same proof works with D replaced by
D − 1. ut

Lemmas 1, 2, and 4 imply the following theorem.

Theorem 3. Let ε < 1 be any positive real number. For any tree T of maximum degree
∆ ≥ 3 and diameter D ≥ 4, consider a labeling scheme of length O(log log∆). Then
any topology recognition algorithm using such a scheme for every tree T must take time
Ω(D∆ε) for some tree.

5 Time for small maximum degree∆ or small diameterD

In this section we solve our problem for the remaining cases of small parameters ∆ and
D, namely, in the case when ∆ ≤ 2 or D ≤ 3. We start with the case of small diameter
D.

5.1 DiameterD = 3

Theorem 4. The optimal time for topology recognition in the class of trees of diameter
D = 3 and maximum degree ∆ ≥ 3, using a labeling scheme of length Θ(log log∆),
is Θ(log∆

(log log∆)).

5.2 DiameterD = 2

We now consider the case of trees of diameter 2, i.e., the class of stars. Since there is
exactly one star of a given maximum degree ∆, the problem of topology recognition
for D = 2 and a given maximum degree ∆ is trivial. A meaningful variation of the
problem for D = 2 is to consider all trees (stars) of maximum degree at most ∆, for a
given ∆.

Theorem 5. The optimal time for topology recognition in the class of trees of diameter
D = 2 (i.e., stars) and maximum degree at most ∆, where ∆ ≥ 3, using a labeling
scheme of length Θ(log log∆), is Θ(log∆

(log log∆)).

5.3 Maximum degree∆ = 2

We finally address the case of trees of maximum degree ∆ = 2, i.e., the class of lines.
Since there is exactly one line of a given diameter D, the problem of topology recog-
nition for ∆ = 2 and for a given diameter D is trivial. A meaningful variation of the
problem for ∆ = 2 is to consider all trees (lines) of diameter at most D, for a given D.

We first propose a topology recognition algorithm for all lines of diameter at
most D, where D ≥ 4, using a labeling scheme of length O(1) and working in time
O(logD).
Algorithm Line-Topology-Recognition

Let T be a tree of maximum degree 2 and diameter at most D, i.e., a line of length
at most D. Let v1, v2, . . . , vk+1, for k ≤ D, be the nodes of T , where v1 and vk+1 are
the two endpoints. At a high level, we partition the line into segments of lengthO(log k)

and assign labels, containing (among other terms) couples of bits, to the nodes in each
segment. This is done in such a way that the concatenation of the first bits of the couples
in a segment is the binary representation of the integer k, and the concatenation of the
second bits of the couples in a segment is the binary representation of the segment
number. In time O(log k), every node learns the labels in each segment, and computes
k and the number j ≥ 0 of the segment to which it belongs. It identifies its position in
this segment from the round number in which it receives a message for the first time.
Then a node outputs the line of length k with its position in it.

The following lemma gives a lower bound on the time of topology recognition for
lines, matching the performance of Algorithm Line-Topology-Recognition.

Lemma 5. Let D ≥ 3 be any integer, and let c > 0 be any real constant. For any
line T , consider a labeling scheme LABEL(T) of length at most c. Let TOPO be any

algorithm that solves topology recognition for every line of diameter at most D using
the labeling scheme LABEL(T). Then there exists a line of diameter at most D, for
which TOPO must take time Ω(logD).

In view of the performance of Algorithm Line-Topology-Recognition
and of Lemma 5, we have the following result.

Theorem 6. The optimal time for topology recognition in the class of trees of maximum
degree ∆ = 2 (i.e., lines) of diameter at most D, using a labeling scheme of length
O(1), is Θ(logD).

6 Conclusion

We established a tight bound Θ(log log∆) on the minimum length of labeling schemes
permitting topology recognition in trees of maximum degree ∆, and we proved up-
per and lower bounds on topology recognition time, using such short schemes. These
bounds on time are almost tight: they leave a multiplicative gap smaller than any poly-
nomial in ∆. Closing this small gap is a natural open problem. Another interesting
research topic is to extend our results to the class of arbitrary graphs. We conjecture
that such results, both concerning the minimum length of labeling schemes permitting
topology recognition, and concerning the time necessary for this task, may be quite
different from those that hold for trees.

References

1. S. Abiteboul, H. Kaplan, T. Milo, Compact labeling schemes for ancestor queries, Proc. 12th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), 547–556.

2. M. Chrobak, L. Gasieniec, W. Rytter, Fast broadcasting and gossiping in radio networks,
Journal of Algorithms 43 (2002):177189.

3. R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, D. Peleg, Label-guided graph exploration
by a finite automaton, ACM Transactions on Algorithms 4 (2008).

4. D. Dereniowski, A. Pelc, Drawing maps with advice, Journal of Parallel and Distributed
Computing 72 (2012), 132–143.

5. Y. Emek, P. Fraigniaud, A. Korman, A. Rosen, Online computation with advice, Theoretical
Computer Science 412 (2011), 2642–2656.

6. P. Fraigniaud, C. Gavoille, D. Ilcinkas, A. Pelc, Distributed computing with advice: Infor-
mation sensitivity of graph coloring, Distributed Computing 21 (2009), 395–403.

7. P. Fraigniaud, D. Ilcinkas, A. Pelc, Communication algorithms with advice, Journal of Com-
puter and System Sciences 76 (2010), 222–232.

8. P. Fraigniaud, D. Ilcinkas, A. Pelc, Tree exploration with advice, Information and Computa-
tion 206 (2008), 1276–1287.

9. P. Fraigniaud, A. Korman, E. Lebhar, Local MST computation with short advice, Theory of
Computing Systems 47 (2010), 920–933.

10. E. Fusco, A. Pelc, Trade-offs between the size of advice and broadcasting time in trees,
Algorithmica 60 (2011), 719–734.

11. E. Fusco, A. Pelc, R. Petreschi, Topology recognition with advice, Information and Compu-
tation 247 (2016), 254-265.

12. L. Gasieniec, A. Pagourtzis, I. Potapov, T. Radzik, Deterministic communication in radio
networks with large labels. Algorithmica 47 (2007), 97-117.

13. L. Gasieniec, D. Peleg, Q. Xin, Faster communication in known topology radio networks,
Distributed Computing 19 (2007), 289-300.

14. C. Gavoille, D. Peleg, S. Pérennes, R. Raz. Distance labeling in graphs, Journal of Algo-
rithms 53 (2004), 85-112.

15. C. Glacet, A. Miller, A. Pelc, Time vs. information tradeoffs for leader election in anonymous
trees, Proc. 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016),
600-609.

16. D. Ilcinkas, D. Kowalski, A. Pelc, Fast radio broadcasting with advice, Theoretical Computer
Science, 411 (2012), 1544–1557.

17. M. Katz, N. Katz, A. Korman, D. Peleg, Labeling schemes for flow and connectivity, SIAM
Journal of Computing 34 (2004), 23–40.

18. A. Korman, S. Kutten, D. Peleg, Proof labeling schemes, Distributed Computing 22 (2010),
215–233.

19. D. Kowalski, A. Pelc, Leader election in ad hoc radio networks: a keen ear helps, Journal of
Computer and System Sciences 79 (2013), 1164-1180.

20. N. Nisse, D. Soguet, Graph searching with advice, Theoretical Computer Science 410
(2009), 1307–1318.

21. D. Peleg, Distributed computing, a locality-sensitive approach, SIAM Monographs on Dis-
crete Mathematics and Applications, Philadelphia 2000.

